Aquaculture2030?

Copernicus Workshop for Fisheries and Aquaculture

Johan Verreth
Aquaculture and Fisheries , Wageningen

Aquaculture: What do we farm?

Europe (EU28)

Source: EUMOFA 2017; FAO 2016

Production

• Fisheries: 5.1 Million MT;

Aquaculture: stable around 1.3 Million MT (~ 4 billion €)

Consumption

25,1 kg/capita/yr; (Aquaculture: 6.5kg)

• growth: 8% in 10yr; 25% farming

Economics

Total trade value: ~30 billion €

Average household expenditure: 107 €/person/yr

The challenge

In the next 15-20yrs, ±100 million MT extra seafood

needed (Subasinghe 2014)

YES, WE CAN:

- → Intensification; industrialization
- → Responsible farming
 - Improve Health, Welfare, Productivity
 - Reduce Environmental Impact
- Tool: Precision Farming

The solutions

Novel feeds

- No Feed-Food claims (insects, algae, seaweed, bacte
- Left-over streams Agro-Food industry

Novel breeds

- 10%-15% genetic improvement per generation
- Based on genomics and precision phenotyping

Recycling nutrients

- RAS
- Re-use of nutrients by other commodities
 (Building with Nature; IMTA; AquaPonics)

Disruptive technologies (precision farming?)

- Novel production systems; sensorica and robotica
- Genomics, Diseases and Farming = Big Data!
- Internet of things, artificial intellingence

Future Land-based Farming: RAS

integration of water purification and aquaculture

Future sea-based farming: go off-shore!

Current technologies in net pens

Elements in a PFF system

Based on Berckmans 2004; Føre et al, 2018

- Monitoring → sensor technology
 - Animal (Behaviour; physiology; genomics; zootechnics)
 - Environmental (Waterquality, pathogens, pollutants, etc)
- Interpretation & Predicting how animal responses change
 - → Modeling, Artificial intelligence
- Decisions and automatisation
 - → Artificial intelligence; Internet of Things; Robots

Sensor technology being used

AQ1 hydro accoustic feeding system for shrimp

Pentair VAKI system for continuous biomass measurement

Sonars and sensors in cage farming

- ① Surface camera
- ② Stereo video
- 3 Sonar
- 4 Acoustic telemetry

From: Føre et al , 2018

Need for improved risk management

Daily routine work and periodical operations must become less dependent on close human intervention

ROVs, AUVs and other remote controlled or autonomous systems are increasingly used

Artificial Intelligence applications

Developments in artificial intelligence and automation – huge

potential for the salmon industry

- Sensoring
- Imaging
- Big data
- Machine learning

- Identifying situations with good growth potentials..
- Identifying risk periods...reduced apetite, poor growth, feed waste, susceptibility for diseases
- Risks for stress on the population, how to avoid it..
- Monitoring the stock- Taking out runts- Treating for lice- Further improved feeding control

Question marks

Developments in salmon farming,

What about family farms?

Developments in #sensor technology;
 need for more AI approaches, combining genomics, disease incidences, behaviour, drug use

IP and privacy regulations needed

Thanks

Johan.verreth@wur.nl

